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This study employs data drawn from the 2000 Agricultural Resource Management Survey, a U.S.
Department of Agriculture-sponsored farmers’ survey. The article estimates returns to scale relation-
ships across dairy farms of different sizes and across different regions, incorporating variables hypoth-
esized to influence farm performance. Results point to significant scale economies in U.S. dairy farms
and underscore the importance of taking account of inefficiency when estimating scale economies.
Contrary to previous research, the preferred cost function specification does not show a region of
decreasing returns to scale. This finding helps explain why the average size of dairy farms has been
increasing.
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Structural changes taking place on dairy farms
are an important policy concern in the United
States and elsewhere. Dairy farm herd sizes
and cow productivity have exhibited signifi-
cant increases during the last twenty years.
The demand for dairy products has only
grown slowly, however, leading to an imbal-
ance between supply and demand and a conse-
quent reduction in the number of dairy farms.
Despite the general trend of increasing farm
size, a very heterogeneous pattern of structural
change appears across regions that relates to
costs of production, technology, weather, and
geography among other factors (MacDonald
et al. 2007; Wolf 2003). Blayney and Normile
(2004) contend that the main drivers of these
changes are a mixture of technological, effi-
ciency, and scale changes, and they note a lack
of empirical evidence on such key technology
indicators as scale economies and their vari-
ation across geographical areas in the United
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States, specifically. This research seeks to fill
that gap.

This study uses a data set for 619 dairy farms
drawn from the 2000 Agricultural Resource
Management Survey (ARMS2000) (USDA-
ERS 2000),1 a national survey of U.S. dairy
producers, to estimate scale economies in such
a way as not to confuse them with economic
inefficiency or other influences in the cost–
output relationship. It builds on analyses of
scale economies (e.g., Alvarez and Arias 2003;
Kumbhakar 1993; Moschini 1988; Tauer and
Mishra 2006) and estimated efficiency in the
dairy sector (e.g., Maietta 2000; Stefanou and
Saxena 1988).

Costs can decrease when efficiency improves
due, for example, to better training, more time
on the farm, or better technology that lowers
costs of production. Our study builds on earlier
ones that have tackled the question of perfor-
mance by either using nonfrontier approaches
to modeling inefficiency (e.g., Maietta 2000;
Stefanou and Saxena 1988) or frontier using
various approaches. Examples include Tauer
and Mishra’s (2006) single-equation cross-
section; Alvarez and Arias’ (2003) panel data
single-equation models with time-varying and
cross-sectional variation in inefficiency; and
system approaches (where first-order condi-
tions and economic objectives are employed)
as, for example, in Kumbhakar (1993) and
Moschini (1988). The latter employed a non-
frontier framework to tackle economies of

1 Information on accessing ARMS can be obtained from
http://www.ers.usda.gov/Briefing/ARMS/Access.htm.
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scale, one of our main concerns in this
study.

Several earlier studies have analyzed scale
economies and efficiency in dairy farms while
investigating key variables that we also find
important. Moschini (1988) found increasing
returns to scale for Canada’s Ontario dairy
producers, with large levels of milk output but
decreasing returns for the very largest ones.
Factors affecting scale economies in that study
were location, debt/equity ratio, milking tech-
niques, building quality, cow type, education,
and horsepower of the largest tractor. Tauer
and Mishra (2006) also found increasing re-
turns to scale, but they were quite small once
accounting for inefficiency. In their study the
higher cost of production on most small farms
was caused by inefficiency rather than tech-
nology. They represented technology by num-
ber of cows and state dummies rather than
by a production, cost, or profit function, how-
ever. Kumbhakar (1993) found that large farms
have exploited short-run returns to scale to
a greater extent than medium or small dairy
farms. His study also noted that large farms
were more technical, allocative, and scale effi-
cient than the others. In addition, he found that
off-farm income is negatively related to per-
formance but least so for large farms, and the
farmer’s level of education contributes more
for medium and large farms than for small
ones. Unlike in our present study, he did not
precisely disentangle allocative and technical
inefficiency because of inconsistent distribu-
tional assumptions. Alvarez and Arias (2003,
p. 141) found a U-shaped average cost curve
and contended that “even if there are ob-
served diseconomies of size, a large enough
increase in managerial ability could outweigh
the rising part of the average cost curve.” They
did not control for variation in allocative in-
efficiency. Using panel data, Maietta (2000)
estimated long-run returns to scale as decreas-
ing on average, and without providing specific
sources for investigating allocative or technical
inefficiency, she found a decrease in allocative
inefficiency and an increase in technical inef-
ficiency for larger farms. Finally, Stefanou and
Saxena (1988) also contributed to the research
on some key variables by finding that educa-
tion and experience matter quite a bit for dairy
farm profit efficiency. They employed a shadow
profit system of equations that did take into ac-
count and explain both allocative and technical
inefficiency variation.

Following and expanding on this literature,
in this article we analyze farm-level data, al-
lowing for variation in cost efficiency and

incorporating variables commonly thought to
influence farm performance. Our estimates are
not plagued by the distributional inconsisten-
cies and misspecifications of inefficiency faced
by previous studies that have examined scale
economies in dairy farming.

Structural Change and Scale Economies
in U.S. Dairy Farming

The transformation of dairy operations is usu-
ally analyzed through changes in location, pro-
duction system, herd size, total and per-cow
production, and organizational shifts through
time (see, e.g., Blayney and Normile 2004;
MacDonald et al. 2007). Here, we focus in-
stead on structural changes that have occurred
during the last twenty years. Figure 1 shows
the inverse relationship between the number
of cows in the national herd and production
of milk per cow. Given that demand growth
for dairy products has not kept pace with the
increase in milk production per cow, the na-
tional herd has declined 11% from 1987 to
2007. During this same period, milk produc-
tion per cow increased 47%. These production
trends have led to total milk production in-
creasing by 30% (U.S. Department of Agricul-
ture, National Agricultural Statistical Service
[USDA-NASS] 2008).

Simple correlation analysis provides some
evidence that scale economies are important
determinants of productivity. There is a wide
variation in milk produced per cow across
states. The correlation between milk produced
per cow and the number of milk cows per oper-
ation across dairy farms is strong and positive,
indicating a potential role for scale economies
in determining productivity. A simple correla-
tion analysis using publicly available USDA-
NASS data at the state level shows a correla-
tion of 0.436 between milk produced per cow
and cows per establishment in 1987 and 0.564
for 2007 (USDA-NASS 2008).

Figure 2 shows further evidence of scale
economies. From 1998 to 2007, the number
of dairy operations in the United States de-
creased by 39%. This decline, however, was
not symmetrical across farm sizes, resulting
in fewer small and a considerable increase
of large dairy farms. The cow inventory of
dairy farms with herd sizes between one and
forty-nine declined from 14.1% to 7.4% of
the total, and that of operations with 50–199
milk cows decreased from 43.6% to 28.8%.
In contrast, dairy operations with 200–1,999
head increased their cow inventory from 35%
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Figure 1. National herd and milk per cow in the United States

Figure 2. Dairy farm size distribution in the United States

to 40.17%, and operations with 2,000 or more
head, from 7.3% to 23.1% (USDA-NASS
2008).

The change in size structure has not affected
all regions of the country equally. A sense of
the regional shifts that have occurred lately
can be grasped by looking at the ranking of

milk-producing states in 1987 and 2007. In
1987, the ten largest milk-producing states
were, in order: Wisconsin, California, New
York, Minnesota, Pennsylvania, Michigan,
Ohio, Texas, Iowa, and Washington; in 2007,
they were: California, Wisconsin, New York,
Idaho, Pennsylvania, Minnesota, Michigan,
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Texas, New Mexico, and Washington. In 1987,
the top ten states produced 68% of the national
milk supply, while in 2007 the top ten produced
73% (USDA-NASS 2008).

These regional changes also imply a shift in
types of production systems.2 Many operations
in states like California, Idaho, and New Mex-
ico, for example, have seen the emergence of
so-called dry-lot systems (i.e., they rely on pur-
chased feed). These emerge when low capital
requirements and large herd sizes that enable
exploitation of scale economies lower cost per
unit of output. In 1987, in California, for exam-
ple, the average number of milk cows per oper-
ation was 226, while in Idaho and New Mexico,
it was fifty-three and fifty head, respectively.
By contrast in 2007, California had an average
of 824 cows per operation, Idaho had 684, and
New Mexico had 814 cows. More traditional
states increased their average size of operation
but by a much smaller percentage. In Wiscon-
sin, New York, and Pennsylvania, the average
number of cows per operation in 1987 was 49,
57, and 39 cows, respectively; in 2007, it was
87, 101, and 65 cows. These states do not rely
so much on purchased feed as on homegrown
feed or pasture (USDA-NASS 2008); that is,
they use capital differently.

Given the heterogeneity of the changes in
dairy operation size across production tech-
nologies and regions, the question of the nature
of scale economies becomes crucial. According
to Chavas (2001), in general the average cost
curve for the agricultural sector in developed
countries tends to be L-shaped; while scale
economies tend to exist for small farms, no
strong evidence indicates that diseconomies
of scale exist for large farms (i.e., there is a
wide range in which scale economies are con-
stant). In addition, Chavas emphasizes the im-
portance of taking into account variables like
the shadow value of unpaid labor. Morrison
et al. (2004) have also examined the trend to-
ward consolidation in U.S. agriculture gener-
ally and have found significant scale and ef-
ficiency advantages of large farms. For dairy
specifically, Jones (1999) presents a similar pic-
ture in which scale economies are exhausted
quickly. The variation in dairy operation sizes,
moreover, can be explained by a myriad of
variables internal and external to the dairy
farm such as pecuniary economies, transaction

2 Blayney and Normile (2004) distinguish three production sys-
tems: confinement, pasture-based, and dry-lot operations. The first
two rely mainly on homegrown feed and the latter on purchased
feed.

costs, tax policy, regulation, and risk. Wolf
(2003) argues that dairy farms in traditional ar-
eas such as Wisconsin, New York, and Pennsyl-
vania face higher adjustment costs (because of
high sunk costs) than emerging regions, a con-
dition that constrains their growth and adop-
tion of technology.

Shadow Cost Model

In modeling U.S. dairy farming, we have taken
three important aspects into consideration.
First, dairy farms employ a multioutput pro-
duction technology. There is no reason to
expect that the major types of output of the
operation move together in response to price
changes, and therefore, aggregation of these
outputs is not justifiable. Second, according
to Wolf (2003), dairy farming is characterized
by fixity of farm assets and a slow farmer re-
sponse to changes in technology and prices.
The result is a quasi-fixed capital input quan-
tity because of a combination of information
asymmetries, transportation costs, and invest-
ment specificity that points to considerable ad-
justment costs that are region specific. Lastly,
the high variation in the costs of dairy enter-
prises can be attributed to differences in scale
of the operation and of technology employed
and the efficiency with which it is applied.

We distinguish two outputs and three vari-
able input prices and quantities as well as a
fixed level of capital to model dairy farming
sector costs. We identify livestock and crops as
separate outputs y = (y1, y2).3 Milk represents
72% of the livestock variable, while crops and
livestock account for a share of 20% and 80%
of total output, respectively. The vectors x =
(x1, x2, x3; K) and w = (w1, w2, w3) represent
variable inputs and their prices, where 1, 2, and
3 correspond to labor, energy, and feed, and K
represents the fixed level of capital. Because
dairy farmers do not have the flexibility to ad-
just capital to their optimal proportions in the
short run, we assume that the farm seeks to
minimize variable cost, min w′x = VC(y, w,
K). This function shows the smallest expendi-
tures on variable inputs required to produce
y, given the variable input price vector w and
the level of fixed capital stock K. The resulting
function VC(y, w, K) is nonnegative and ho-
mogeneous of degree +1 in w. Given (y, K),

3 A three-output model failed because of nearly fixed propor-
tions between milk and other livestock products. Culled milk cows
dominate the output of nonmilk livestock products on dairy farms,
and in this data set milk and culled cows are highly correlated.



Mosheim and Lovell Scale Economies and Inefficiency 781

VC(y, w, K) is concave in w, nondecreasing in
y and w, and nonincreasing in K (Kumbhakar
and Lovell 2000).

In order to model the variation in perfor-
mance of dairy farms, we could use the tradi-
tional error components model:

w′x = E = V C(y, w, K ) exp(v + u).(1)

In this representation, the dairy enterprise’s
actual variable costs or expenditures E are
modeled as the sum of the variable cost fron-
tier, a term v that represents random noise,
and a term u capturing cost inefficiency. The
term u, in turn, represents the combined ef-
fect of allocative and technical inefficiency.
Allocative inefficiency refers to the failure
to combine variable inputs in optimal pro-
portions, and technical inefficiency represents
the unsuccessful minimization of variable in-
put usage to produce the enterprise’s outputs.
Herein, we aim to estimate both of these types
of inefficiency.

According to Greene (2008), to identify and
measure properly both technical and alloca-
tive inefficiency, a cost function together with
a system of input demand equations needs to
be employed. Despite the fact that the estima-
tion of this system adds degrees of freedom and
results in more efficient estimates, it also leads
to a difficult dilemma, known as the Greene
problem that occurs when using a flexible func-
tional form of the cost function. To illustrate,
in a translog cost setting, the model is

ln(w′x) = ln E = ln V C(y, w, K )

+ v + u and
wn xn

w′x
= Sn = Sn(y, w, K ) + vn + �n

n = 2, . . . , N

(2)

where Sn = ∂ ln V C
∂ ln w

follows from Shephard’s
lemma, and we have deleted one of the share
equations. The terms v and vn represent sta-
tistical noise. The introduction of the terms
u and �n converts the variable cost function
model from the type originally estimated by
Christensen and Greene (1976) to a frontier
model. The terms u and �n capture the increase
in variable costs attributable to technical and
allocative inefficiency. The usual distributional
assumptions of equation (2) are that the error
terms v and u are distributed independently
of each other and of �n. It follows, on the one
hand, that these assumptions are only consis-
tent if assuming allocative efficiency. As a re-
sult, estimating equation (2) provides no more

information than estimating (1) would. In ad-
dition, the estimates of u are biased by the inap-
propriate allocative efficiency assumption. On
the other hand, if �n represents technical and
allocative inefficiency, it cannot be distributed
independently of u, because allocative ineffi-
ciency raises costs.

Given the difficulty in properly estimating
and decomposing cost inefficiency using er-
ror components, we resort to the shadow cost
function model,4 in which the formulation of
technical and allocative inefficiency is para-
metric. Hence, we assume that the dairy farmer
employs a production function of the form
f (�x, K) = y. The enterprise is technically ef-
ficient if it is not possible to radially reduce
input usage x by lowering the magnitude of
parameter �, the maximum contraction being
where � is equal to one. In addition, the en-
terprise is allocatively inefficient if at �x the
marginal rate of substitution fi

f j
is not equal

to the market input price ratio wi
w j

. The farmer
in this case, nevertheless, is allocatively effi-
cient relative to a shadow price ratio �i j

wi
w j

=
w∗

i
w∗

j
, a relationship that the dairy farm uses in-

stead of relative market prices to minimize
input usage. The shadow price ratio takes ac-
count of all of the production constraints faced
by the farmer but that are unknown to the ob-
server. The enterprise, then, is allocatively ef-
ficient if the parameters �ij equal unity.

Following Kumbhakar and Lovell (2000),
the unobserved shadow variable cost function
for the dairy enterprise is

V C

(
y,

�w

�
, K

)

= min
�x

{(
�w

�

)T

(�x) : f (�x, K ) = y

}

= 1
�

V C(y, �w, K )

(3)

4 This estimation strategy has been successfully used to address
the problem (known as the Greene problem) of estimating and
decomposing allocative and technical inefficiency in a translog
system-of-equations (Fried, Lovell, and Schmidt 2008). This ap-
proach follows Kumbhakar and Wang (2006), who argue against
lumping together allocative and technical efficiency in the estima-
tion of cost frontiers, which biases both the cost function parame-
ters and economic inefficiency and underestimates returns to scale
and overestimate input price elasticities. Nevertheless, it is impor-
tant to point out that their results as to returns to scale, for example,
are based on a Monte Carlo study (i.e., a controlled experiment
with a known data generating process) and not a detailed theoret-
ical argument concerning the direction scale economies bias. We
estimate this bias econometrically.
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and applying Shephard’s lemma, the variable
input share equations are

Sn = ∂ ln V C

∂ ln �wn

= Sn(y, �w, K ) × (�n2)−1∑3
k=1 [Sk(y, �w, K ) × (�k2)−1]

n = 1, 2, 3.

(4)

In the above formulation, not all of the �ijs
can be identified because the variable cost
function is linearly homogeneous in shadow
variable input prices. We chose the price dis-
tortion for energy as a numeraire. We follow
Atkinson and Dorfman (2006) and assume that
the market for energy is at equilibrium at all
times, and therefore, its market and shadow
prices are the same. Therefore, we can assume
that �22 = 1. This assumption allows us to cal-
culate the cost savings of achieving allocative
efficiency.

The shadow price vector, then, is w∗ = (�12
w1, w2, �32w3). If the input price vector w is
used instead of w∗ when estimating the shadow
cost function, and the variables �n2 are not
equal to unity, the shadow cost function is mis-
specified. The parameters �n2 represent the de-
gree of departure from optimal proportions
relative to the second input. If �n2 > 1, then xn
is underutilized; if �n2 < 1, then xn is overuti-
lized.

The technical and allocative inefficiency
terms can be made functions of variables hy-
pothesized to affect dairy farm performance.
We employ the following variables, used in
the literature, of input-oriented technical in-
efficiency and of allocative inefficiency: z1,
whether or not the enterprise is located in
the traditional dairy area;5 z2, the farm’s pro-
portion of purchased feed to total feed; z3, a
dummy variable indicating a farmer operator
with an educational attainment of college or
more; and z4, the farmer operator’s years of
management experience.

Input-oriented technical inefficiency is mod-
eled as

ln � = �1z1 + �2z2 + �3z3 + �4z4.(5)

If every �j is zero, then � = 1, and the farm
is technically efficient. If �i > 1, then the vari-
able raises technical inefficiency. If �i < 1, then

5 Traditional dairy states are: CT, DE, IA, IL, IN, MA, MD, ME,
MI, MN, MO, NH, NJ, NY, PA, OH, RI, VT, and WI (MacDonald
et al. 2007).

the effect is positively related with technical
efficiency. We hypothesize that the same vari-
ables we employed above affect the distortion
factors according to the following positive ex-
ponential functional form

�12 = exp(�120 + �121z1 + �122z2

+ �123z3 + �124z4),

�32 = exp(�320 + �321z1 + �322z2

+ �323z3 + �324z4), and

�22 = 1.

(6)

If all �12i are equal to zero, then �12 = 1, and
variable inputs 1 and 2 are allocated efficiently.
If all �32i are zero, �32 = 1, and variable inputs
3 and 2 are allocated efficiently. A negative
coefficient inside the exponential expression
contributes to an overutilization of the input
relative to input 2, and vice versa.

We estimate equations (3)–(6)6 using the fol-
lowing translog7 specification:

ln V C

= �o + ln � +
2∑

l=1

�l ln yl +
3∑

j=1

� j ln(�j2w j )

+ �K ln K + 1/2
2∑

l=1

2∑
m=1

�lm ln yl ln ym

+ 1/2
3∑

n=1

3∑
k=1

�nk ln(�n2wn) ln(�k2wk)

+ 1/2
3∑

j=1

2∑
l=1

� jl ln(�n2wn) ln yk

+ 1/2�K K (ln K )2

+
2∑

l=1

�l ln yl ln K +
3∑

j=1

� j ln(�j2w j ) ln K

+ ln

{
3∑

n=1

(�n2)−1

[
�n +

3∑
k=1

�nk ln(�k2wk)

+
2∑

k=1

�nk ln yk + �n ln K

]}
.

(7)

6 This is based on the models presented in Kumbhakar and Lovell
(2000) that introduce the shadow cost function approach to effi-
ciency measurement as developed by Lau and Yotopoulos (1971),
Yotopolous and Lau (1973), and Atkinson and Halvorsen (1980,
1984).

7 See Christensen, Jorgenson, and Lau (1973).
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In equation (7) symmetry �nk = �kn, k �= n
is imposed as required by Young’s theorem.
In addition, the variable cost function must be
linearly homogeneous with respect to shadow
input prices, which requires the following re-
strictions:

3∑
j=1

� j = 1,

3∑
k=1

�nk = 0, n = 1, 2, 3,

3∑
j=1

� jl = 0, l = 1, 2, and

3∑
j=1

� j = 0.

(8)

The shadow cost shares derived from equa-
tion (7) are

Sn =
(�n2)−1

[
�n + ∑3

k=1 �nk ln(�k2wk) + ∑2
k=1 �nk ln yk + �n ln K

]
∑3

j=1 (�j2)−1
[
� j + ∑3

k=1 � jk ln(�k2wk) + ∑2
k=1 � jk ln yk+� j ln K

] .(9)

The elasticity of shadow variable cost with
respect to the output vector and the shadow
shares must also be nonnegative, and the
Hessian matrix of second-order derivatives of
shadow variable costs with respect to shadow
prices must be negative semi-definite. We
checked these monotonicity and concavity
properties of the cost function for each obser-
vation using the parameter estimates as well
as the mean of the data both assuming and not
assuming inefficiency.

Given asset fixity, in order to estimate
a measure of scale elasticity (SCE) from
a variable shadow cost function, we fol-
low Caves, Christensen, and Swanson (1981),
Caves, Christensen, and Tretheway (1984), and
Garcia and Thomas (2001) and define:

SCE(y, w∗, K )

= 1 − ∂ ln V C(y, w∗, K )/∂ ln K∑2
i=1 (∂ ln V C(y, w∗, K )/∂ ln yi )

.

(10)

If SCE(y, w∗, K) > 1, average variable cost
is decreasing in y, and returns to scale are in-
creasing. If SCE(y, w∗, K)< 1, average variable
cost is increasing in y, and returns to scale are
decreasing. SCE(y, w∗, K) = 1 signals locally
constant returns to scale.

Data Sources and Variable Construction

In order to construct the variables for the
shadow variable cost function model (equa-
tions (5)–(9)), we obtained most of the raw
data from the 2000 Agricultural Resource
Management Survey Phase III Version 4
for dairy (ARMS2000) (USDA-ERS 2000).
ARMS is a nationally representative, annual
USDA survey of farms, with a probability-
based sample that is stratified within states
according to commodity mix and farm sales
(Banker, Green, and Korb 2001). Because it
is a stratified sample, farms have varying sam-
ple weights (e.g., larger farms are sampled at
higher rates and hence have smaller weights).
The survey includes several questionnaire ver-
sions, two of which pertain to this study.
Version 4 was directed to dairy farms, with spe-
cific questions related to the farm’s dairy en-
terprise. Most of the data for our analysis are
drawn from this questionnaire, which gathered

information from 848 individual dairy farms.
We derived some supplemental information
from version 1, which was directed to a broad
cross-section of all types of farms.

We applied a set of rules to “clean up”
the data, resulting in a data set composed
of 619 dairy farms. Inconsistencies in produc-
tion and marketing, farmer refusal to provide
information, missing variables, negative op-
erating profits, or suspiciously large or small
entries were used as criteria for elimination.
The sample’s structure before and after clean-
ing is roughly comparable. In the original
raw data, 23.59% of the observations cov-
ered herd sizes of milk cows 1–49, 55.43% for
herd sizes 50–199, 17.21% for herd sizes 200–
999, and 3.78% for herd sizes of more than
1,000. After cleaning, the sample was for herd
sizes: 1–49, 21.81%; for 50–199, 57.19%; for
200–999, 16.96%; and for more than 1,000,
4.03%.

Variable cost VC, as defined in the previ-
ous section, is calculated as total expenditure
for labor, feed, and energy. We constructed
all of the price indexes for the outputs and
variable inputs using the multilateral Tornqvist
price index proposed by Caves, Christensen,
and Diewert (1982, p. 78). This procedure
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compares the price faced by firm k to the geo-
metric mean of prices:

ln PCCD
k = 1

2

N∑
i=1

(	ik + 	̄i )(ln pik − ln pi )(11)

where k = 1, 2, . . . , N, are the number of firms

i = 1, 2, . . . , M, are the number

of commodities

	ik = pikqik∑M
i=1 pikqik

is the value of the

ith commodity for the kth firm, and

	̄i = 1
N

N∑
k=1

	ik and ln pi = 1
N

N∑
k=1

ln pik.

Thus, we constructed an implicit livestock
quantity index y1 by dividing total livestock
revenues by a price index p1, using price
available in nonpublished form from USDA’s
Economic Research Service (ERS)8 for the
fifteen livestock and livestock commodities
identified in ARMS2000. In a similar fashion,
we constructed a crop quantity index y2 for
the thirty-one crop commodities identified in
the ARMS2000 by using prices available from
NASS and ERS and by deflating total crop
revenue by a Tornqvist multilateral price in-
dex. ARMS2000 did not collect all prices and
quantities for all of the commodities used to
construct the Tornqvist indexes. Where miss-
ing, we used state averages or internal ERS
data to separate the revenues of a particu-
lar commodity into price and quantity. Hence,
ARMS2000 data allow us to calculate either
implicit or direct quantity indexes. The choice
between Tornqvist direct or implicit quantity
indexes presents a problem because the index
fails the factor reversal test as quantity indexes
defined directly result in different magnitudes
than those defined implicitly. We follow Allen
and Diewert’s (1981) recommendation of us-
ing the implicit quantity index if the individual
quantity ratios exhibit more variability than
the individual prices ratios. Price and quan-
tity ratios are defined as pmi/pmj and qmi/qmj ,
respectively, where M = 27 (the total number
of crop and livestock commodities that are pro-
duced by two dairy farms or more). We then

8 Information on accessing ARMS can be obtained from
http://www.ers.usda.gov/Briefing/ARMS/Access.htm.

calculated the standard deviation of a total
of 1,243,646 price and quantity ratios to de-
cide which type of index to use. We found the
standard deviation of the output ratios to be
17.39 and that of the price ratios 1.03. The use
of implicit quantity indexes is thus justified.
The derivation of the labor prices and quanti-
ties was a great deal more challenging because
the necessary information is not directly avail-
able from ARMS2000. We generated a labor
price index w1 by using the cost of unpaid
and paid labor for the farm operator, spouse,
and full- and part-time workers. Because
ARMS2000 Version 4 does not distinguish be-
tween earned and unearned income, the com-
pensation of the operator, spouse, and other
family members was calculated as the marginal
increase in total income from an extra hour of
work controlling for variables such as location,
assets, and education.

Obtaining this marginal increase took sev-
eral steps. First, we estimated a log-linear re-
gression with the logarithm of off-farm income
as a dependent variable and variables repre-
senting operator and spouse off-farm hours
worked as independent variables, as well as
others to be described subsequently. We also
used the squares and interactions of these two
variables. We further employed characteris-
tics such as unemployment rates for the U.S.
commuting zones (CZ), as defined by ERS
(Tolbert and Sizer 1996), where the dairy farm
is located. We compiled information for the
delineated CZs that included manufacturing,
services, construction, retail, and wholesale
employment. We merged this information with
ARMS2000 data on variables such as educa-
tion and age of operator and nonfarm assets
of operator and spouse. We also used state
dummy variables and interaction terms. We
followed El-Osta and Ahearn (1996) to de-
cide on a broad set of variables to include in
the regression and then refined the selection
of these variables by specification tests. Sec-
ond, because we detected heteroscedasticity in
these estimations, we employed the Harvey–
Godfrey methodology to correct this problem.
The adjusted R2 of the unweighted regression
was 0.600 and that of the feasible generalized
least squares was 0.870, reflecting a much bet-
ter fit. We then derived the implicit value of
an hour of work for spouse and operator sep-
arately. We aggregated the four types of la-
bor (implicit value of operator’s and spouse’s
unpaid labor and paid part and full-time
paid employees) using a Tornqvist multilateral
index.
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In order to generate a price index for energy
w2, we needed prices and quantities by type
of fuel, which is not available in ARMS2000
Version 4 but is in Version 1. We used the lat-
ter to estimate fuel demand by energy type
for the dairy enterprise employing a seemingly
unrelated regression model. We then allowed
the parameters of this model to predict en-
ergy consumption by type in ARMS2000 Ver-
sion 4. We also constructed a feed price index
w3 for the twenty-six types of purchased, six-
teen types of homegrown, and the five types
of pasture feed identified in ARMS2000. Fi-
nally, the different types of energy were ag-
gregated using, again, a Tornqvist multilateral
index.

Capital stock is only available for the dairy
enterprise in ARMS2000 Version 4, but the
unit of observation is the whole farm, which
may have several crop or livestock enterprises.
We approximated the farm-level price of capi-
tal stock by a weighted average cost of capital
(WACC). In this formulation the cost of cap-
ital is a weighted sum of the cost of debt and
cost of equity. Cost of debt is the interest rate
that farmers actually paid, and we determined
the cost of equity using the capital asset pricing
model.

Following Coelli et al. (2003):

WACC = [(1 − g) × re] + [g × rd ](12)

where the leverage g is equal to debt/(debt +
equity), re is the cost of equity capital, and rd is
the cost of debt capital. ARMS2000 Version 4
also provided the data on debt and equity cap-
ital. Cost of debt capital is the Moody’s sea-
soned Baa corporate bond yield. We calculated
the cost of equity capital through the capital
asset pricing model (CAPM):

CAPM = re = r f + �e × (rm − r f )(13)

where rf is the return of a three-month U.S.
treasury bill minus the rate of inflation for
2000; �e is the revenue-weighted average of
livestock and crop industry betas; and rm is
the compounded annual returns for a ten-year
holding period minus the rate of inflation for
1991–2000 (see Kaplan and Peterson 1998 for
industry betas and Ibbotson Associates 2005
for inflation and returns).

We assume that the optimal level of capital
K can be best calculated as operating profit
divided by a rate of depreciation plus the

WACC.9 We assume further that the availabil-
ity of profits is an important determinant of in-
vestment behavior and hence the optimal level
of capital. We follow the cash flow model (see,
e.g., Berndt 1991, p. 239) and work by Grunfeld
(1960), who assumed that the optimal level of
capital is a linear function of the firm’s value,
which we approximate as discounted profits.
Elliott (1973) also provides a comparison of
this approach with more conventional ones,
such as in Jorgenson and Siebert (1968). We
tested two models with different measures of
capital. In one we used the value of the firm
as a proxy for capital and in the second to-
tal physical assets used in the farm. The latter
measure is statistically insignificant, which we
take to mean that it is an inferior representa-
tion of capital relative to our current measure.
Therefore, the former is our current measure.

Operating profit is equal to crops and live-
stock sold minus explicit variable costs. We cal-
culated the rate of depreciation as 
 = S

A 
S +
E
A 
E + L

A 
L , where A is total assets, S is the
value of the farm structures and buildings, E
is the value of machinery and equipment, and
L is the value of land. The rates of depreciation
for structures and equipment are, respectively,
0.0237 and 0.1179 (see Jorgenson and Yun
1991, p. 82). We do not depreciate land. This
method of estimating capital stock also draws
on Bhattacharyya, Parker, and Raffiee (1994),
Morrison (1999a), and Coelli et al. (2003). We
described the variables hypothesized to influ-
ence dairy farm performance at the end of the
previous section and present descriptive statis-
tics for these variables in table 1.

Estimation and Results

In this section, we test first for the most ap-
propriate functional form for the shadow cost
function, then the four models incorporating
various specifications of inefficiency, and next
the regularity properties of the preferred spec-
ification. We choose the preferred specification
by likelihood ratio tests. In the second part of
this section, we employ the preferred model,
model 4, to calculate various indexes of in-
efficiency, and we then return to the original
four models in order to derive the scale elas-
ticities implied by these various specifications.
Finally, we derive marginal and average cost

9 Capital is calculated to be the residual of revenue less variable
cost divided by the opportunity cost of capital, as in Bhattacharyya,
Parker, and Raffiee (1994).
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Table 1. Weighted Summary Statistics of Variables Used in Shadow Variable
Cost Function

Variable and Units Mean Std Dev Min Max

Variable cost (VC) (in $) $246,327 $2,839,423 $30,655 $6,557,535
Livestock (y1) quantity index 322,112 6,085,638 24,733 16,359,100
Crops (y2) quantity index 112,955 4,256,090 0 13,235,647
Labor (w1) price index $1.134 9.000 0.249 18.336
Energy (w2) price index 1.032 1.541 0.723 1.488
Feed (w3) price index 1.004 1.401 0.542 1.706
Capital (K) in $ $926,160 $10,556,362 $66,061 $27,391,187

Variables hypothesized to influence dairy farm performance
(Technical �, allocative � efficiency)

Traditional dairy (z1) 0.275 3.832 0 1
Purchased feed proportion (z2) 0.432 2.241 0 1
Experience (z3) 26 111 1 74
Education (z4) 0.097 2.539 0 1

indexes for model 4 under various inefficiency
restrictions.

Specification of the Variable Shadow
Cost Function10

In order to test the appropriate specifica-
tion of the variable cost function, we esti-
mated the econometric model consisting of
the shadow variable cost function, share equa-
tions, distortion function, and homogeneity
restrictions—that is, equations (7), (9), (5),
(6), and (8), respectively. We dropped one
share equation (for energy) because otherwise
they would sum to unity. A symmetric error
term is appended to equations (7) and (9).
Because the errors of these equations are cor-
related, we estimated the model by nonlinear
iterated seemingly unrelated regression tech-
niques. The resulting estimates approximate
maximum likelihood estimates when they
converge.

Table 2 reports the hypothesis tests con-
ducted while estimating various specifications
of the shadow cost model. Section A presents
specification test results for models 1, 2, 3,
and 4. Model 1 estimates a variable cost func-
tion without the technical and allocative inef-
ficiency terms or the explanatory variables z.
Model 2 includes the distortions � but no � or
inefficiency explanatory variables z. Model 3
integrates � and �, the latter as a function of
the z variables. Model 4 specifies both alloca-
tive and technical inefficiency as functions of

10 We pay close attention to how we specify the variable cost
function so as not to confuse inefficiency with scale economies.

the explanatory variables.11 Hypotheses A(1),
A(2), and A(3) test the restrictions on model 4
implied by models 1, 2, and 3. These hypothe-
ses are soundly rejected, and hence, model 4 is
preferred.

Table 3 shows parameter estimates for
model 4. The first-order parameters can be
interpreted as elasticities because we divided
each observed variable by its sample mean.
Regarding technical inefficiency, a positive or
negative sign for a parameter �j indicates an
increase or decrease, respectively, in variable
costs related to the magnitude of the factor af-
fecting farm performance. A positive sign for a
given allocative inefficiency parameter �i2j in-
dicates that the variable input is underutilized
relative to energy, or vice versa. The strength
of these results shows how flexible and appro-
priate our model is for analyzing the dairy farm
sector. Unlike what usually happens with such
a model, almost all parameters are significant
at the 1% level, and the share equations are
highly significant.

In general, we can distinguish a weak test of
regularity conditions from a strong test of reg-
ularity conditions. For example, Chavas (2008)
reports monotonicity and curvature test results
only at the sample mean, a weak test that can
be misleading. Therefore, we report strong test
results, not just at the sample mean but also at
every data point, for both of the cases where ef-
ficiency and inefficiency are assumed. We find
strong support for most theoretical properties,

11 The general forms of the variable cost functions for models 1,
2, 3, and 4 are, respectively, VC(y, w, K), VC(y, �w, K), VC(y, �w,
K, � (z)), and VC(y, � (z)w, K, � (z)).
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Table 2. Shadow Variable Cost Function Hypotheses Tests

Hypothesis LR Test Statistica P-value

A. Model choice (model 4 against models 1, 2, 3, respectively)
(1) Ho : �1 = �2 = �3 = �4 = �120 = �320 = �121 = �321 = �122 =

�322 = �123 = �323 = �124 = �324 = 0
108.4 <0.0001

(2) Ho : �1 = �2 = �3 = �4 = 0 58.3 <0.0001
(3) Ho : �121 = �321 = �122 = �322 = �123 = �323 = �124 = �324 = 0 15.93 0.04
B. Technology specification tests for model 4
(1) Ho : �1 = 0 175.5 <0.0001
(2) Ho : �2 = 0 24.9 <0.0001
(3) Ho : �1 = 0 145.7 <0.0001
(4) Ho : �2 = 0 18.4 <0.0001
(5) Ho : �3 = 0 36.0 <0.0001
(6) Ho : � K = 0 6.6 0.001
(7) Ho : Cobb–Douglas 1,396.1 <0.0001
(8) Ho : Homothetic 203.9 <0.0001
C. Technical inefficiency specification tests for model 4
(1) Ho : �1 = �2 = �3 = �4 = 0 (overall) 58.3 <0.0001
(2) Ho : �1 = 0 (traditional) 2.4 0.1
(3) Ho : �2 = 0 (purchased feed proportion) 30.0 <0.0001
(4) Ho : �3 = 0 (education) 0.0 1.0
(5) Ho : �4 = 0 (experience) 28.9 <0.0001
D. Allocative inefficiency specification tests for model 4
(1) Ho : �120 = �320 = �121 = �321 = �122 = �322 = �123 = �323 =

�124 = �324 = 0 (overall)
40.0 <0.0001

(2) Ho : �121 = 0 (traditional 1) 0.0 1.000
(3) Ho : �321 = 0 (traditional 2) 2.1 0.15
(4) Ho : �122 = 0 (purchased feed proportion 1) 0.0 1.000
(5) Ho : �322 = 0 (purchased feed proportion 2) 0.0 1.000
(6) Ho : �123 = 0 (education 1) 0.03 0.867
(7) Ho : �323 = 0 (education 2) 1.5 0.225
(8) Ho : �124 = 0 (experience 1) 8.7 0.003
(9) Ho : �324 = 0 (experience 2) 4.7 0.03

aLR = − 2(LR − LU )∼� 2
q.

and we attempt to explain failure of remaining
properties where they occur.

We checked monotonicity and curvature
properties for each observation and at the
mean of the data. Table 4 summarizes the prop-
erties of the estimated equations. We denote
elasticity by the symbol ε. Monotonicity im-
plies that shadow shares and output elastici-
ties must be positive, and variable cost must
be nonincreasing with respect to capital. The
concavity condition requires that the shadow
cost function’s matrix of second-order deriva-
tives with respect to shadow prices be negative
semi-definite. At the mean when efficiency is
assumed (� = 0 and � = 1), the shadow vari-
able cost function satisfies all of these regular-
ity conditions.

We further conducted observation-by-
observation tests of the monotonicity and
concavity properties despite the well-known
problem that flexible functional forms violate

the regularity conditions implied by economic
theory (see, e.g., Caves and Christensen
1980).12 These results are displayed in table 4.
The monotonicity property with respect to
y1 is met at every observation but becomes a
problem at large herd sizes for y2. Large herd
farms have relatively low crop output. As
to the monotonicity properties of inputs x1,
x2, and x3, we do not encounter a significant
number of violations of the regularity condi-
tions for x2 and x3, but we do find violations at
the largest herd sizes for x1. An explanation
might be that dairy farms use more paid labor
as they get bigger. Regarding the expected
nonincreasing effect of K on VC, we find that
at low herd size levels, this property is not met,

12 In general, we attempt to minimize the number of regularity
condition violations, especially concavity, when specifying a model.
We do not impose curvature as in Diewert and Wales (1987), but
we do test it.
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Table 3. Parameter Estimates of the Preferred Shadow Variable Cost Function

�o −0.16∗ �23 0.04∗∗∗ � KK 0.29∗∗∗ AI
(−1.80) (2.90) (2.85)

�1 0.66∗∗∗ �33 0.07∗∗∗ �1 −0.28∗∗∗ �120 −2.96∗∗∗

(13.25) (3.63) (−3.44) (−13.39)
�2 0.07∗∗∗ �11 −0.15∗∗∗ �2 −0.001 �121 1.29∗∗∗

(4.99) (−11.82) (−0.33) (9.83)
�1 0.52∗∗∗ �21 0.05∗∗∗ �11 0.36∗∗∗ �122 1.46∗∗∗

(12.07) (3.04) (4.91) (7.83)
�2 0.20∗∗∗ �31 0.10∗∗∗ �22 0.003∗∗∗ �123 −0.03

(6.80) (5.92) (4.89) (−0.16)
�3 0.28∗∗∗ �12 −0.0006 �12 −0.0008 �124 0.02∗∗∗

(5.08) (−0.89) (−0.31) (4.69)
� K −0.12∗∗∗ �22 0.002∗∗∗ TI �320 −2.46∗∗∗

(−2.56) (2.76) (−7.52)
�11 0.23∗∗∗ �32 −0.001∗∗ �1 −0.04∗∗∗ �321 0.11∗

(40.04) (−2.28) (−1.54) (1.62)
�12 −0.13∗∗∗ �1 0.03∗∗∗ �2 −0.29∗∗∗ �322 −0.004∗∗∗

(−6.80) (2.54) (−5.47) (−0.03)
�13 −0.10∗∗∗ �2 0.002 �3 0.002 �323 0.11

(−5.73) (0.20) (0.06) (1.28)
�22 0.89∗∗∗ �3 −0.03 �4 0.005∗∗∗ �324 0.005∗∗

(3.55) (−3.58) (5.43) (2.16)

Adj R2 lnVC Share1 Share3 LLF 1,815
0.86 0.69 0.66

Note: t-statistics in parentheses.
Single asterisk (∗), double asterisks (∗∗), and triple asterisks (∗∗∗) denote significance at 0.1, 0.05, and 0.01 levels, respectively.
TI and AI denote technical inefficiency and allocative inefficiency, respectively.

Table 4. Shadow Variable Cost Function at Mean (Preferred Model) Calculated Indicesa

∇2V Ĉ
∇ŵ∗2 (NSD)

Herd Size (No. of Obs) ε̂y1 ≥ 0 ε̂y2 ≥ 0 ŝ∗
1 ≥ 0 ŝ∗

2 ≥ 0 ŝ∗
3 ≥ 0 Data Mean Inefficient ε̂K < 0

Herd < 30 (32) 0% 0% 0% 0% 0% 70% (76%) 37%
30 ≤ Herd < 50 (103) 0% 2% 0% 0% 2% 66% (82%) 53%
50 ≤ Herd < 100 (207) 0% 1% 0% 0% 0% 68% (79%) 40%
100 ≤ Herd < 200 (147) 0% 8% 0% 0% 0% 75% (65%) 34%
200 ≤ Herd < 500 (70) 0% 17% 0% 0% 0% 86% (60%) 11%
500 ≤ Herd < 1,000 (35) 0% 14% 2% 0% 0% 76% (48%) 14%
1,000 ≤ Herd < 2,000 (16) 0% 13% 6% 0% 0% 99% (54%) 1%
2,000 ≤ Herd (9) 0% 78% 12% 0% 0% 100% (52%) 0%
Data mean efficient 0% 0% 0% 0% 0% 0% 0%

aObservation-by-observation violations of monotonicity, nonnegativity, and concavity properties.
Note: Data mean efficient implies calculation of properties using average input price data but imposing technical and allocative efficiency; data mean
inefficient, in contrast, allows for inefficiency to vary by observation, but it is evaluated at the mean of the input price data. Results of this last calculation are
in italics in parenthesis. To the left of the parentheses are the results of evaluating the properties at the prices faced by each individual operation allowing for
observation-specific inefficiency.

perhaps because the dairy farms with small
herd sizes are not as capital intensive as large
operations (i.e., the proportion of purchased
feed goes up as the dairy farm gets larger).
Hence, a key finding is that the structure of
capital does not remain optimal as the dairy
farm expands. We also tested violations in
concavity at the mean of price data assum-
ing observation-by-observation variation in

inefficiency, and we tested curvature viola-
tions assuming observation-by-observation
variation in both inefficiency and price.

Once established that the variable shadow
cost function meets the required regularity
conditions (conditional on what we have said
above), we return to tables 2 and 3 to present
hypothesis tests on the structure of technology
and efficiency based on the preferred model 4
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and the impact of variables hypothesized to
affect inefficiency. We performed likelihood
ratio tests on the first-order parameters, hy-
potheses B(1) through B(6), in order to assure
their statistical significance given the complex
survey design of ARMS. Specification tests,
hypotheses B(7) and B(8), soundly reject a
Cobb–Douglas functional form as well as a ho-
mothetic translog variable cost function as the
preferred specification.

Hypotheses C(3) and C(5) indicate that
parameters �2 and �4 are highly significant.
Table 3’s information on parameter �2 sug-
gests that a higher proportion of purchased
feed (an indicator of relative capital intensive-
ness) implies a lower level of technical ineffi-
ciency, which is as expected. In addition, the
coefficient �4 says that the more experience
that the farmer operator has managing a dairy
farm, the higher his or her variable cost is.
This latter effect captures the fact that more
experienced (and older) dairy farmers man-
age less capital-intensive operations. We did
not attempt to separate the impact of age and
experience. The �1 and �3 parameters are in-
significant (hypothesis C(2) and C(4)), sug-
gesting that technical inefficiency differences
between traditional and nontraditional dairy
areas are unimportant in our model. Educa-
tional attainment does not matter either. The
two effects, hypotheses D(8) and D(9), are
highly significant, however. We interpret the
negative signs for the parameters �124 and �324
as more experienced operators overutilizing
labor and feed relative to energy. These lat-
ter effects reinforce the point about the impact
of experience on inefficiency—that is, more
experienced, older farmers use less capital-
intensive technologies. Overall technical and
allocative inefficiency, hypotheses C(1) and
D(1), respectively, do matter when analyzing
dairy farm costs, and therefore, the cost func-
tion needs to take account of these types of
inefficiency in order to be specified correctly.

Inefficiency and Scale Economies

To analyze scale economies, an average total
cost function is usually employed. Multioutput
technologies pose a challenge because there is
not a single output by which to divide costs.
Baumol, Panzar, and Willig (1982) proposed
the average incremental cost (AIC) function
in order to confront this problem and to char-
acterize scale economies in multioutput tech-
nologies. An AIC function is a partial average
total cost function in that other outputs are

held constant. The curvature of this function
indicates scale economies in the same way that
a single output average total cost curve would.

To estimate the AIC function, we first
needed to derive a total cost function. To do
so, we assumed that total shadow costs can
be represented as the sum of shadow vari-
able costs plus implicit capital expenses: TC =
VC + IPKK.13 The variable IPK in turn is equal
to �WK, where WK is the observed opportu-
nity cost of capital. Thus, we have the fol-
lowing relationship: IPK = �K WK = − ∂VC

∂K ≡
VC
K × ∂ ln VC

∂ ln K . In the framework that we employ
here, the firm invests according to �KWK, the
unobserved shadow value of capital due to
constraints and inefficiency, and not accord-
ing to the observed WK. A value of 1 for
�K will mean that the farm reached an opti-
mal level of capital.14 The elasticity of capital
in turn is defined as ∂ ln V C

∂ ln K = �K + �K K ln K +∑2
l=1 �l ln yl + ∑3

j=1 � j ln w∗
j . Hence, the mag-

nitude of − ∂V C
∂K also depends on the efficiency

with which variable inputs are used.
We can then define the dairy farm’s incre-

mental cost of producing y1, given that it pro-
duces the entire livestock, livestock products,
and crop vector y = (y1, y2), as: I C1(y1, w

∗) ≡
T C(y, w∗) − T C(y2̂, w

∗), where y2̂ = (0, y2).
AIC for y1 is then defined as

AI C(y1, w
∗) ≡ C(y, w∗) − C(y2̂, w

∗)
y1

.(14)

We chose the mean levels of the crop output
and the variable input prices to derive the AIC
for y1, using table 3’s estimated parameters.

We derived technical, allocative, and aver-
age incremental cost efficiency indexes by im-
posing or relaxing restrictions on equations (5)
and (6) while calculating equation (15) with the
parameters obtained from estimating model 4.
Thus, we derived four magnitudes for AIC:
first AICOE (overall efficiency) obtained by
imposing the restrictions of no technical inef-
ficiency (ln � = 0) or allocative inefficiency
(�12 = 1 and �32 = 1); second, AICTI (techni-
cal inefficiency), derived by imposing alloca-
tive but not technical efficiency; third, AICAI
(allocative inefficiency), derived by imposing

13 We follow an approach different from that recommended in
Morrison (1999b) in that we use the opportunity cost of capital to
approximate the long-run cost function instead of first determining
the optimal level of capital based on prices faced by the dairy farm.

14 For a variable cost function the optimal amount of capital is
found where marginal benefit, variable cost reduction, equals the
marginal cost of capital (Chambers 1988; Morrison 1999b).
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Table 5. Implied Technical, Allocative, and
Overall Efficiency for Preferred Modela

Herd Size
(% of Sample
Cow Inventory) TE AE OE

Herd < 30 (1%) 0.72 0.53 0.39
30 ≤ Herd < 50 (3%) 0.73 0.53 0.39∗∗
50 ≤ Herd < 100 (11%) 0.74 0.55∗∗∗ 0.41∗∗∗
100 ≤ Herd < 200 (16%) 0.75 0.58∗∗∗ 0.44∗∗∗
200 ≤ Herd < 500 (18%) 0.80∗∗∗ 0.62∗∗∗ 0.49∗∗∗
500 ≤ Herd < 1,000 (19%) 0.82∗∗ 0.66∗∗∗ 0.54∗∗∗
1,000 ≤ Herd < 2,000 (16%) 0.83 0.66 0.55
2,000 ≥ Herd (17%) 0.86 0.71∗ 0.60
Average 0.75 0.56 0.42

aHo: diff = meani − meanj = 0.
Note: Differences across herd sizes significant at single asterisk (∗) 10%,
double asterisks (∗∗) 5%, and triple asterisks (∗∗∗) 1%.

technical but not allocative efficiency; and fi-
nally, AICOI (overall inefficiency) was derived
by imposing neither allocative nor technical ef-
ficiency. Technical inefficiency (TI) is defined
as AICTI

AICOE
and technical efficiency (TE) in turn

as 1
TI . Because TI is greater or equal to 1, the

index TE varies between 0 and 1, with 1 being
the most efficient. We defined allocative inef-
ficiency (AI) as AICAI

AICOE
and allocative efficiency

(AE) as 1
AI . The index AE also varies between

0 and 1. Last, we define overall inefficiency
(OI) as AICO I

AICOE
and overall efficiency (OE) as

1
O I . Because OI is greater or equal to 1, the
index OE varies between 0 and 1, with 1 being
the most efficient. Overall efficiency can also
be calculated as TE × AE. Table 5 presents
our implied efficiency results. Hotelling’s T2

generalized means tests ascertained the sig-
nificance of means differences for the various

Table 6. Scale Economies in U.S. Dairy Farming

Long-Run Scale Elasticity Under Different Specifications

Herd Size Model 4
(% of Sample Cow Inventory) Model 1 Model 2 Model 3 (Preferred Model)

Herd < 30 (1%) 2.33 2.48 2.01 2.42
30 ≤ Herd < 50 (3%) 2.37 2.60 2.00 2.48
50 ≤ Herd < 100 (11%) 1.77∗∗∗ 1.96∗∗∗ 2.43 1.98∗∗∗

100 ≤ Herd < 200 (16%) 1.57∗∗ 1.67 1.57 1.81
200 ≤ Herd < 500 (18%) 1.28∗∗∗ 1.35∗∗∗ 1.33∗∗∗ 1.48∗∗∗

500 ≤ Herd < 1,000 (19%) 1.16∗∗∗ 1.21∗∗∗ 1.22∗∗∗ 1.34∗∗∗

1,000 ≤ Herd < 2,000 (16%) 1.10∗∗ 1.16∗∗ 1.17∗∗ 1.29∗

2,000 ≥ Herd (17%) 1.10 1.15 1.15 1.25
Average 1.89 2.06 2.01 2.06

Note: Ho: diff = meani – meanj = 0.
Differences across herd sizes significant at single asterisk (∗) 10%, double asterisks (∗∗) 5%, and triple asterisks (∗∗∗) 1%.
All differences in scale elasticity between models 1 and 4 for each herd size are significant at the 1% level.

efficiency measures across herd sizes, at the
same time taking account of ARMS’s complex
survey design. Table 5 shows the increase in
AIC efficiency for dairy enterprises, with herd
sizes between fifty and 1,000. The AIC overall
efficiency results are driven by the increased al-
locative efficiency of dairy enterprises as they
get larger. The heavier reliance on paid labor
in large farms could explain this increase. We
also find significant differences in technical ef-
ficiency between small dairy farms and those
of more than 200 cows.

To investigate further model 4’s connection
between inefficiency and herd size, we ana-
lyzed the shape of the total cost function ac-
cording to the different specifications implied
by models 1, 2, 3, and 4 using equation (10).
The long-run scale elasticity results by herd
size and model are shown in table 6. We also
employed Hotelling’s T2 generalized means
tests to determine significance levels of scale
elasticity across herd sizes. Differences within
models and across herd sizes are not signifi-
cant for either small or large herd sizes. No-
tably, however, differences between models 1
and 4 within herd sizes are significant at the
1% level. This last significance test means that
scale economies will be underestimated if in-
efficiency is not taken into account (e.g., if
model 1 is estimated instead of model 4). Dif-
ferences within models by herd size exhibit an
L-shaped pattern in that the differences are
not significant at both tail ends, which indi-
cates small statistically insignificant decreases.
Most striking of all, models 1 through 4 show
increasing returns to scale up to the 1,000 to
2,000 herd size category and an insignificant
increase in scale elasticity thereafter. Model 4
shows the largest significant scale elasticity.
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Table 7. AIC Under Different Inefficiency Restrictionsa for Preferred Model and MC

Herd Size
(% of Sample Cow Inventory) AICOE AICTI AICAI AICOI MCOI

Herd < 30 (1%) $30.61 $42.45 $59.53 $82.91 $31.78
30 ≤ Herd < 50 (3%) $20.73∗∗∗ $28.84∗∗∗ $39.66∗∗∗ $55.46∗∗∗ $22.58∗∗∗

50 ≤ Herd < 100 (11%) $15.10∗∗∗ $20.66∗∗∗ $27.60∗∗∗ $37.88∗∗∗ $18.01∗∗∗

100 ≤ Herd < 200 (16%) $10.78∗∗∗ $14.35∗∗∗ $18.58∗∗∗ $24.78∗∗∗ $13.88∗∗∗

200 ≤ Herd < 500 (18%) $9.00∗∗∗ $11.31∗∗∗ $14.56∗∗∗ $18.33∗∗∗ $12.35∗∗

500 ≤ Herd < 1,000 (19%) $7.15∗∗∗ $8.69∗∗∗ $10.91∗∗∗ $13.25∗∗∗ $10.11∗∗∗

1,000 ≤ Herd < 2,000 (16%) $6.81 $8.18 $10.14 $12.18 $9.72
2,000 ≥ Herd (17%) $7.13 $8.30 $10.00 $11.66 $10.12
Average $16.76 $19.82 $31.06 $42.72 $19.27

aOE = no technical or allocative inefficiency; TI = technical inefficiency and allocative efficiency; AI = technical efficiency and allocative inefficiency; OI =
technical and allocative inefficiency.
Note: Ho: diff = meani − meanj = 0.
Differences across herd sizes significant at single asterisk (∗) 10%, double asterisks (∗∗) 5%, and triple asterisks (∗∗∗) 1%.
Differences of AICOE and AICOI across models within a herd size are all significant at 1% level. All differences of AIC OI and MC are significant at 1%.

The preferred model’s results contradict re-
search that has found diseconomies of scale
in dairy (e.g., Alvarez and Arias 2003). Our
findings are bolstered by the trends shown in
figure 2 and in general by the trend toward
larger dairy farms in the U.S. sector (see, e.g.,
MacDonald et al. 2007).

In order to validate the results of this study,
we also employed the average incremental
cost function to test the structure of scale
economies in dairy farming. Table 7 presents
these results, imposing different inefficiency
restrictions on model 4: AICOE, AICTI , AICAI ,
and AICOI defined above. Table 7 also illus-
trates the significance levels for mean differ-
ences across herd sizes using the same means
difference test employed above (test results
between models 1 and 4 within a herd size
are all significant at 1%). The preferred spec-
ification for model 4 shows a statistically sig-
nificant reduction in average costs stopping
at herd sizes up to 1,000 cows. No signifi-
cant decreases in average incremental costs
are shown thereafter. Nevertheless, that differ-
ences between the models are statistically sig-
nificant again leads to the conclusion that scale
economies will be greatly underestimated if in-
efficiency is not taken into account. We also
calculated long-run marginal cost for the pre-
ferred model, defined as average incremen-
tal cost over long-run scale elasticity. It can
be seen from table 7 that, despite the fact
that marginal cost is still beneath average in-
cremental cost, marginal cost has started in-
creasing, which points to eventual decreasing
returns to scale. Again, and importantly, our
results did not find decreasing returns to scale
for the sample we have, but we did find that

eventually decreasing returns will happen, all
other things equal.

Figure 3 shows four AIC curves for y1 cor-
responding to the imposition of the technical,
allocative, and overall inefficiency. This graph
also displays two average revenue curves for
2000: milk and milk with livestock products.
The chart shows several striking results. First,
scale economies are definitely the driving force
toward consolidation in the sector. As costs
decrease rapidly, scale economies are increas-
ing (or at least not decreasing) in each ineffi-
ciency model. Second, the costs employed to
graph the various AIC curves are significantly
different from each other and so, again, in-
efficiency matters. Third, comparing the AIC
curves with the various average curves indi-
cates that economic costs are not fully recov-
ered for small herd sizes. Two reasons might
explain this result: first, the opportunity cost of
labor is particularly high for small dairy opera-
tions; second, adjustment costs hinder smaller
dairies from adopting new technology that ul-
timately would lower their inefficiency and en-
hance their potential to exploit the cost-cutting
economies of scale. These findings help to ex-
plain why smaller operations do not simply get
bigger, and they harken back to Wolf’s (2003)
argument of adjustment costs faced by small
dairy.

In short, we have shown that it is cru-
cial not to confuse farm operation above the
average variable cost (inefficiency) with the
shape of the average variable cost curve (scale
economies). Tables 6 and 7 show a signifi-
cant understatement of scale economies for
small, medium, and large sizes across ineffi-
ciency models. Table 5 displays a low overall
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                              t-stat        :                 (94.93)       (-38.63)

AICAI (No TI and AI) trend eq. : lnAIC AI  = 181.83  -   0.4407*lnHS    R 2 = 0.6794

                                    t-stat:                          (89.54)       (-36.18)

AICTI (TI and No AI) trend eq.: lnAIC TI  = 122.65   -   0.4185*lnHS    R 2  = 0.6714

                                    t-stat: (85.50) (-35.50)

AICOE (No TI and No AI) trend eq.: lnAIC OE  = 76.612  -   0.3754 *lnHS    R 2  = 0.6252

t-stat: (77.70)     (-44.54)
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MCOI (TI and AI) trend eq. : lnMC OI = 62.80  -   0.2905*lnHS    R 2  = 0.4664

                              t-stat        :                 (69.28)       (-23.20)

Figure 3. Scale economies and inefficiency in dairy farming in the United States

efficiency for small and medium farms. This
cost penalty diminishes in magnitude as size in-
creases, but it remains significantly important.
This result is entirely consistent with the trends
in the dairy farming sector. In table 7 the pre-
ferred model 4 does not allow for inefficiency
points to decreasing returns to scale (though
insignificant). Using the same data and allow-
ing for inefficiency, model 4 also shows that
the cost of inefficiency declines with the size
of the dairy enterprise but shows a signifi-
cantly larger elasticity of scale and increasing
returns to scale than model 4 with efficiency
imposed. In sum, if scale economies are impor-
tant in dairy production—and they are—they
must be measured so as to distinguish them
from both the costs of allocative and technical
inefficiency at the same time that important
variables like the opportunity cost of labor are
taken into account.

Summary and Conclusions

Our substantive findings are found in tables 5–
7 and figure 3. We took care in estimating a
function that met the regularity conditions of
monotonicity in output quantities and shadow
input prices as well as concavity in shadow in-
put prices. Also, the elasticity of capital stock
with respect to variable costs is negative. We
selected the variable cost function incorporat-
ing technical and allocative inefficiency coeffi-
cients through parametric tests. This research

employs a national farm-level sample of dairy
producers in the United States. Table 7 ex-
actly decomposes average incremental costs
into its technical and allocative components
and gives a clear picture of the respective costs.
Table 6, in contrast, shows results from spec-
ification tests, the most important conclusion
being that the significant differences in scale
elasticity results from estimating a model with
or without inefficiency. Table 5, based on the
results of table 7, indicates that as the dairy
farm gets larger, it becomes more efficient, a
finding confirmed in the literature. As noted
in the literature, our finding that the relation-
ship between marginal costs and average cost
points to eventual decreasing returns to scale
needs to be qualified by saying that technolog-
ical advances and human capital investment
might delay this trend.

The title of this article mentions both scale
and efficiency, but are they equally important?
We do not think so. We argue that efficiency
and its patterns are interesting and impor-
tant, and they influence the patterns of scale
economies, but scale economies are far more
crucial. From this perspective, tables 7 and 6
matter more than table 5. Economies of scale
drive structural change in dairy farming; hence,
the model must specify different types of inef-
ficiency correctly. Previous findings (and asser-
tions) use models plagued by various types of
specification error, perhaps the most serious
being the failure to incorporate properly (or
to incorporate at all) technical and allocative
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inefficiencies. At the very least, the model we
present here comes closest to accounting for
these problems in estimating scale economies
in U.S. dairy farming. Our substantive finding
is that this more precise model supports a con-
clusion that returns to scale are larger at all
levels of output than previously believed.

[Received April 2007;
accepted January 2009.]
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